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Abstract 
 
Deteriorated performance data of a micro gas turbine were generated and the artificial neural network was applied to 

predict the deteriorated component characteristics. A program to simulate operation of a micro gas turbine was set up 
and deterioration of each component (compressor, turbine and recuperator) was modeled by changes in the component 
characteristic parameters such as compressor and turbine efficiency, their flow capacities and recuperator effectiveness 
and pressure drop. Single and double faults (degradation of single and two parameters) were simulated. The neural 
network was trained with a majority of the generated deterioration data. Then, the remaining data were used to check 
the predictability of the neural network. Given measurable performance parameters as inputs to the neural network, 
characteristic parameters of each component were predicted and compared with original data. The neural network pro-
duced sufficiently accurate prediction. Using a smaller number of input parameters decreased prediction accuracy. 
However, an acceptable accuracy was observed even without information on several input parameters. 
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1. Introduction 

Micro gas turbines are attractive power sources for 
the distributed generation system considering its 
technical maturity, environmental friendliness and 
high heat recovery capacity. Design practice of micro 
gas turbines is different from that of conventional 
large gas turbines in some aspects. Turbine inlet tem-
perature and pressure ratio are much lower than those 
of large gas turbines. Considering the low pressure 
ratio as well as the small volumetric flow due to small 
power rating, a single stage radial compressor and 
turbine are usually used. Another feature of micro gas 

turbine design is use of a recuperator to avoid effi-
ciency penalty that would be inevitable in designing a 
simple gas turbine cycle with low pressure ratio and 
turbine inlet temperature.  

In addition to increasing design performance, pre-
diction and prevention of the performance degrada-
tion through an appropriate diagnosis is as important 
as in conventional gas turbines. Even with the several 
unique design features mentioned in the previous 
paragraph, the performance deterioration mechanism 
of a micro gas turbine is expected to be similar to that 
of conventional gas turbines. The performance dete-
rioration of industrial gas turbines is well documented 
in a reference [1]. Most of the diagnosis methods such 
as model-based analysis methods and artificial intelli-
gence methods [2] are applicable to micro gas tur-
bines. A few studies have been reported on the sub-
ject of performance tests and basic diagnostics of 
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small gas turbines [3-5].  
Various physical problems cause changes in the 

characteristic parameters (component efficiency and 
flow capacity) of each component of the gas turbine, 
which results in changes in measurable performance 
parameters (temperatures, pressures, power, etc). 
Comparison of estimated characteristic parameters for 
any operating condition with reference data provides 
information on the healthiness of each component. 
Thus, the most important process of performance 
diagnosis is to predict the component characteristic 
parameters for a given set of measured performance 
parameters. The other important thing in developing a 
diagnosis system of an engine is preparation of the 
deterioration database linking the deteriorated charac-
teristic parameters and the corresponding perform-
ance parameters.  

Diagnosis methods of a gas turbine engine can be 
classified into either model-based methods or artifi-
cial intelligence methods. A typical example of the 
latter is the artificial neural network. Since the neural 
network is not based on analysis but on a database, its 
prediction process is rapid and accurate if the predic-
tion is tried within the scope of a trained database. In 
particular, it is quite useful when the problem is 
highly non-linear and a functional relation between 
inputs and outputs is not easy to set up. Since physical 
problems of gas turbines have these characteristics, 
efforts to apply neural network to the fault detection 
and diagnosis of aero and industrial gas turbines have 
been increased during past decade [6-12].  

In this study, a program to simulate operation of a 
micro gas turbine was constructed. Then, models to 
simulate the deterioration of each component of were 
made and the program was run to obtain the perform-
ance parameters for each deteriorated characteristic 
parameter. This process generated a database for dete-
riorated operation. Then, the database was applied to 
train a neural network. After having been trained, the 
neural network predicted the characteristic parameters 
for given sets of performance parameters. 
 
2. Deteriorated performance data 

2.1 Off-design modeling  

The object of this study is a 30 kW class commer-
cial micro gas turbine, which adopts a single stage 
centrifugal compressor and a single stage radial tur-
bine and an annular recuperator wrapped around the 
core parts. The engine was tested with detailed meas- 

Table 1. An example of full load performance data. 
 

Ambient temperature (K) 291.0 
Pressure ratio 3.59 

Air flow rate (kg/s) 0.283 
Compressor efficiency (%) 75.6 

Turbine efficiency (%) 87.5 
Recuperator effectiveness (%) 85.0 
Turbine inlet temperature (K) 1115.5 
Turbine exit temperature (K) 862.8 
Exhaust gas temperature (K) 534.9 

Fuel flow rate (kg/s) 0.00217 
Electric power (kW) 27.53 

Thermal efficiency (%) 25.68 
 

 
Fig. 1. Schematic of the micro gas turbine with measuring 
locations. 

 
urements and reference component characteristic 
parameters were obtained [5]. Fig. 1 is a schematic of 
the engine with measuring locations. Details of the 
test and procedure of obtaining component character-
istic parameters can be referred to the literature [5]. 
Table 1 exemplifies performance data for a full load 
condition.  

As it is hard to obtain deteriorated engine perform-
ance by degrading each component artificially, dete-
rioration data were generated by simulation. In order 
for a simulation program to generate the deteriorated 
data accurately, it should be able to predict the normal 
(non-deteriorated) operation of the micro gas turbine 
first. To simulate engine operation, component char-
acteristics (compressor, turbine and recuperator) are 
needed. A compressor map was generated based on 
the measured mass flow, pressure ratio and efficiency 
data. Since the engine operates with varying shaft 
speed, only a single operating point exists per speed. 
Therefore, performance curves (flow capacity vs 
pressure ratio and flow capacity vs efficiency) were 
generated by using an existing performance map of a 
compressor with a similar design point. Fig. 2 exem-
plifies the compressor map with a running line. Tur- 
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Fig. 2. Compressor map with an example of the engine run-
ning line. 
 
bine characteristic was modeled by the following 
Stodola equation because it represents the variation of 
turbine flow capacity sufficiently well [5].  
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The variation of recuperator effectiveness was 

modeled by the following correlation which had re-
generated the observed effectiveness behavior of the 
engine well enough [13]. 
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These component models were incorporated into 

process simulation software [14] to simulate operat-
ing behavior of the engine. A wide range of off-
design operation has been simulated and compared 
with test data, and good agreement was observed [13]. 
The good agreement between tested and simulated 
operation line in Fig. 2 is an example. Accordingly, 
the off-design models are quite appropriate in simu-
lating the operation of the micro gas turbine. There-
fore, the components models were used as reference 
characteristics and the off-design analysis program 
was adopted to simulate the deteriorated operation in 
the next section. 

 
2.2 Generation of deterioration data 

Deterioration of gas turbine performance is caused 
by a performance decrease of each component, which 

is represented (or sensed) by variations of its charac-
teristic parameters from the reference values. Several 
studies summarized and reported causes and effects 
regarding the gas turbine performance degradation [1, 
15, 16]. Main causes of performance deterioration are 
fouling, erosion, corrosion and foreign object damage. 
Due to these problems, efficiencies and flow capaci-
ties of each component change, which leads to engine 
performance deterioration. In addition to compressor 
and turbine degradation, recuperator deterioration is 
added in micro gas turbines. Problems of the com-
pressor and turbine usually result in reductions of 
flow capacity and efficiency. In a turbine, however, 
erosion may increase the flow capacity. Recuperator 
degradation (usually due to fouling) will cause a de-
crease of effectiveness and an increase of pressure 
loss, i.e., an increase of the back pressure. Modifica-
tion of the following component characteristics, given 
as either a curve or an equation, simulates deteriora-
tion of each engine component. 
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Turbine efficiency:
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Recuperator effectiveness:
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Back pressure: ,( )b gas out ambP P P∆ = −   (8) 
 
A decrease of cΓ  by a prescribed percentage for 

all pressure ratios on the compressor map simulated 
the compressor flow capacity reduction. Compressor 
efficiency reduction was also simulated by a similar 
correction of the reference efficiency. Fig. 3 shows 
the method of compressor map correction schemati-
cally. A decrease of the turbine flow capacity ( tΓ ) 
and efficiency was simulated similarly by reducing 
the flow parameter given by Eq. (1) and the reference 
efficiency. The recuperator performance deterioration 
was simulated by a decrease of the effectiveness and 
an increase of the back pressure loss. These correc-
tions for component deteriorations can be expressed 
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Fig. 3. An example of correcting compressor characteristics 
to simulate deterioration. 
 
as follows: 

 
1 ,c c refcΓ = ⋅ Γ   (9) 

( )2 , ,( )c c c ref c refcη ηΓ = ⋅ Γ
  (10) 

3 ,t t refcΓ = ⋅ Γ   (11) 
( )4 , ,( )t t t ref t refcη ηΓ = ⋅ Γ

  (12) 
5 ,rec rec refcε ε= ⋅   (13) 
6 ,b b refP c P∆ = ⋅ ∆   (14) 

 
where the coefficients c1 to c6 were adopted to gener-
ate arbitrary deteriorations. The values of the coeffi-
cients vary from 1.0 to 0.97 with a decrement 0.005, 
corresponding to zero to 3% reduction of each charac-
teristic parameter. In case of the turbine flow capacity, 
zero to 3% increase of the flow capacity characteristic 

 
curve is also simulated to consider the erosion effect. 
Table 2 lists all the cases of simulated faults. Seven 
single faults (fault set number 1 to 7) and twenty dou-
ble faults (fault set number 8 to 27) were simulated. 
The analysis was applied to full load (full speed) con-
ditions of four different ambient temperatures be-
tween 291 to 301 K. Since the turbine inlet tempera-
ture had been estimated to be almost same for all full 
load conditions in the engine test, it was kept constant 
during the simulation. The simulation generated more 
than 3,000 fault data points. 

Figs. 4 to 6 show variations of power, thermal effi-
ciency and exhaust gas temperature for five fault 
cases (2, 5, 8, 19 and 27 of Table 2). The degree of 
deterioration means the degree of correcting each 
characteristic parameter to simulate the specific dete-
rioration. For example, 3.0% means a case with the 
coefficient of 0.97 in Eqs. (9) to (14). All of the re-
sults seem physically reasonable. For example, a de-
crease of compressor efficiency (fault case 2) causes a 
reduction in the net power production. The resulting 
increase of the compressor discharge temperature 
(CDT) makes the combustor inlet temperature (recu-
perator exit air temperature) higher than the nominal 
value, which reduces the required fuel supply to the 
combustor. Thus, the degree of reduction in thermal 
efficiency is slightly less than that of the power. The 
higher air side inlet temperature at the recuperator 
causes an increase of the gas side exit temperature, 
i.e., exhaust gas temperature (EGT) of Fig. 6. Addi-
tional flow capacity reduction of the compressor 
(fault case 8 - reduction of both the efficiency and  

Table 2. Fault cases. 
 

Fault number 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Compressor flow ca-

pacity reduction ○      ○ ○ ○ ○ ○ ○       

Compressor efficiency 
reduction  ○     ○ ○ ○ ○ ○ ○       

Turbine flow capacity 
reduction   ○    ○ ○ ○ ○ ○      

Turbine flow  
capacity increase    ○   ○ ○  ○ ○ ○   

Turbine efficiency 
reduction     ○  ○ ○ ○  ○   ○ ○ 

Recuperator effective-
ness reduction      ○ ○ ○ ○   ○  ○  ○

Back pressure loss 
increase       ○ ○ ○ ○   ○  ○ ○
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Fig. 4. Variation in power due to component deteriorations. 
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Fig. 5. Variation in thermal efficiency due to component 
deteriorations. 
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Fig. 6. Variation in exhaust gas temperature due to compo-
nent deteriorations. 

 
flow capacity) worsens the engine performance. The 
reduced compressor mass flow causes a decrease in 
the compressor discharge pressure, i.e., a lower pres-
sure ratio, which increases the turbine exit tempera-
ture (TET). 

A decrease of turbine efficiency (fault case 5) in-
creases the turbine exit temperature, which in turn 
makes the combustor inlet temperature (air side exit 
temperature at the recuperator) higher. Thus, thermal 
efficiency does not decrease as much as power does 
due to a reduced requirement of fuel supply. In case 
of mixed reductions of turbine efficiency and flow 
capacity (fault case 19), both the power and thermal 
efficiency reduce further. Deterioration of the recu-
perator (case 27) causes a moderate power reduction 
due to increased back pressure loss. The reduced re-
cuperator effectiveness makes the exhaust gas tem-
perature higher and the combustor inlet temperature 
lower. Thus, the decrease of thermal efficiency is 
greater than that of power. All of the other simulated 
results, not shown here, are also physically sound. 
Consequently, the generated fault data are evaluated 
to be quite reasonable and practical.  
 

3. Neural network 

3.1 Methodology 
Artificial neural network is a mathematical or com-

putational model mimicking biological neural net-
works. It consists of an interconnected group of artifi-
cial neurons and processes information using a con-
nectionist approach to computation. More practically, 
neural networks are non-linear statistical data model-
ing tools. They can be used to model complex rela-
tionships between inputs and outputs or to find pat-
terns in data through training. Therefore, they are 
quite useful in solving problems where the system is 
non-linear and a functional relation between inputs 
and outputs is hard to describe. Performance diagno-
sis of the gas turbine is a good example of such prob-
lems. Accordingly, the effort to try out neural net-
works in performance diagnosis of gas turbines has 
been increased recently. 

Peformance diagnosis of a gas turbine engine is a 
process to predict the component operating state 
represented by characteristics parameters (effciency 
and flow capacity) for a given (usually measured) set 
of performance parameters (temperture, pressure, 
etc.). Detailed setup of a complete diagnosis system 
depends on user’s purpose, but performance diagnosis 
usually means a comparison of the predicted or 
estimated characteristic parameters with those at 
healthy operating conditions, resulting in a judgment 
of healthiness of a component and its degree of 
deterioration. In this work, the usefulness of the 
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artificial neural network in predicting characterisitc 
parameters for deteriorated operation is examined. 
This is a primary step in developing a diagnosis 
program. A sucessful validation of the methodology 
in this work may present useful information in 
developing a full diagnosticprogram. 

Table 3 summarizes input and output data used in 
the neural network system of this work. Both the 
input and output data are the simulated data obtained 
in section 2. The input data are measurable para-
meters (usually performance parameters) and the 
output data are component characteristic parameters 
that should be estimated by using the measured 
parameters. A commercial program [17] was used for 
the neural network simulation. Fig. 7 shows the struc-
ture of the neural network when all of the nine inputs 
of Table 3 are used. When different numbers of input 
data are used, different numbers of nodes of input and 
hidden layers were used. The quick propagation 
method was adopted to train the network and a loga-
rithmic transfer function was used. A manual ran-
domization range of ±0.3 is given to select the 
 
Table 3. Data classification for the neural network prediction. 
 

Input data Output data 
Compressor inlet temperature 

Compressor inlet pressure 
Compressor discharge temperature 

Compressor discharge pressure 
Fuel mass flow 

Turbine exit temperature 
Exhaust gas temperature 

Exhaust gas pressure 
Power 

Compressor efficiency 
Air flow 

Turbine efficiency 
Recuperator effectiveness

Turbine exit pressure 

 

 
 
Fig. 7. An example of the neural network structure. 

initial value randomly. The number of iterations dur-
ing training was 100,000. To deal with overtraining, a 
method called ‘retain and restore best network con-
trol’ was used. A copy of the network with the lowest 
validation error achieved during one of the previous 
iterations was retained and restored after network 
training was completed. 

Application of the neural network consisted of two 
steps: training and prediction. In the training phase, 
the neural network was trained with 80% of the gen-
erated deterioration data. In the prediction phase, the 
accuracy of the trained neural network was validated 
with the remaining 20% data. For each fault case, 
deteioration data were randomly divided into the two 
data categories (data for training and data for 
prediction). Deviation of the predicted result of the 
neural network from the original value was evaluated 
and the root mean square deviation for each fault case 
was defined as follows to check the predictability of 
the network. 
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3.2 Results 

Several neural networks with different structures, 
depending on the number of input parameters used, 
were applied. First, the neural network architecture of 
Fig. 7 (9-6-5: numbers of nodes of input, hidden and 
output layers are 9, 6 and 5, respectively) was used. In 
this situation, it was assumed that all of the nine input 
data of Table 3 are available as measured data. In 
general, the neural network regenerates the original  
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Fig. 8. RMS deviations of neural network prediction when all 
input data are used. 
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data very well. As shown in Fig. 8, the RMS devia-
tions of all 27 fault cases are sufficiently less than 
0.2% except for a couple of cases. The greatest RMS 
deviation is less than 0.4%. There is no sensible dif-
ference between deviations for single and double 
faults. Accordingly, it can be concluded that the neu-
ral network was well structured and trained, and its 
accuracy is sufficiently good. 

As mentioned above, the reference results of Fig. 8 
were obtained assuming that all of the nine input data 
were provided. In reality, however, some of the data 
may not be available because they are not measured. 
For example, fuel mass flow (MF), compressor dis-
charge temperature (CDT) and exhaust gas tempera-
ture (EGT) were not measurable in the original com-
mercial version of the micro gas turbine used in this 
study. They were measured with additionally 
equipped sensors [5]. Therefore, it would be useful to 
check if the neural network can predict the character-

istic parameters sufficiently well even without infor-

mation of some input parameters. Consequently, pre-
dictions were also performed with reduced numbers 
of input data. It was assumed that some of selected 
four parameters (MF, CDT, EGT and TET) were not 
available (not measured onsite) as inputs. In these 
situations, the number of input nodes was reduced to 
fit the number of input data. The number of nodes of 
the hidden layer was also reduced. Architectures of 8-
6-5, 7-5-5, 6-5-5, 5-4-5 were used for situations 
where the number of input parameters unused are one, 
two, three and four, respectively. Each network was 
trained and applied to prediction independently with 
different structures.  

Results of predictions with one parameter excluded 
from the input data are shown in Fig. 9. For compari-
son, results of predictions using all input data (Fig. 8) 
are also shown as dark bars. In general, excluding one 
parameter reduces accuracy. However, RMS devia-
tions of almost all instances remain under 0.5%. Only 
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Fig. 9. Deviations of neural network prediction when one input parameter is not used. 
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Fig. 10. Deviations of neural network prediction when two input parameters are not used. 



 J. E. Yoon et al. / Journal of Mechanical Science and Technology 22 (2008) 2516~2525 2523 
 

  

4 out of 108 instances show RMS deviations over 
0.5%. There are no special correlations between the 
excluded parameters and the fault cases, which seems 
to result from the randomness of the neural network. 
In particular, fuel flow is not usually measured in 
micro gas turbines, and thus cannot be used as an 
input parameter in engine diagnosis. Excluding fuel 
flow may give a slightly higher inaccuracy. However, 
it is not greater than the inaccuracies due to excluding 
other parameters. This seems to be a great advantage 
of the neural network method. Consequently, the 
neural network seems to produce satisfactory results 
even without using one of the input data. Results of 
predictions with two parameters excluded from the 
input data are shown in Fig. 10. All six combinations 
among four parameters were analyzed. Inaccuracies 
further increase from the previous analysis. About 
22% instances produce deviations over 0.5%. The 
worst instance (case 14) reaches about 1.5%. How-
ever, most deviations are much less than 1%. Again, 
there are no noticeable correlations between the ex-
cluded parameters and their effects on special fault 
cases are observed. Results of predictions with three 
as well as four (all) parameters excluded from the 
input data are shown in Fig. 11. Naturally, the overall 
inaccuracy increases again. Now, about 55% and 
75% instances result in deviations over 0.5% for the 
predictions without using three and four parameters, 
respectively. The worst instance (case 14) reaches 
about 1.5% again; however, almost all instances pro-
duce RMS deviations less than 1%.  
 

4. Conclusions 

Component deterioration of a micro gas turbine 

was simulated, and deteriorated component character-
istics were predicted by using an artificial neural net-
work. Results are summarized as follows. 

(1) Based on performance test results, component 
characteristic parameters for normal (healthy) opera-
tion were estimated. A simulation program for off-
design operation of the micro gas turbine was con-
structed. Deteriorated engine data were generated 
considering changes in characteristic parameters such 
as efficiency and flow capacity of the compressor and 
the turbine, and effectiveness and pressure drop of the 
recuperator. Seven single faults and twenty double 
faults were simulated. The simulation provided 
physically reasonable deterioration data.  

(2) The majority of the deterioration data were ap-
plied to train an artificial neural network and the re-
maining data were used to check its predictability. If 
all of the input parameters were used, the RMS devia-
tions of the predicted characteristic parameters from 
the original values were less than 0.2% for most cases. 
The effect of excluding some parameters from the 
input data on the accuracy of the prediction was also 
analyzed. This simulates conditions where some of 
the performance parameters (temperatures and flow 
rate) are not measured onsite. Excluding one parame-
ter produces RMS deviations far less than 0.5% on 
the average. Increasing the number of unused pa-
rameters increases the prediction error. However, 
even if two parameters are excluded, 80% instances 
produce RMS deviations less than 0.5%. Excluding 
three or four input parameters worsens the prediction 
accuracy further but the deviation hardly exceeds 1%.  

(4) This work validated the usefulness of the neural 
network as a tool to predict deteriorated characteristic 
parameters. The network can predict component 
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Fig. 11. Deviations of neural network prediction when three or four input parameters are not used. 
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characteristic parameters with an acceptable accuracy 
even without information on a couple of temperatures 
and fuel flow. Additional information on those pa-
rameters would make the neural network produce 
sufficiently high accuracy.  
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Nomenclature----------------------------------------------------------- 

c1, …, c6 : Coefficients 
CDT : Compressor discharge temperature [K] 
EGT : Exhaust gas temperature [K] 
MF : Fuel mass flow rate [kg/s] 
m  : Mass flow rate [kg/s] 
h : Specific enthalpy [kJ/kg] 
N : Number of data 
P : Pressure [kPa] 
∆Pb : Back pressure loss [kPa] 
RMS : Root mean square deviation 
T : Temperature [K] 
TET : Turbine exit temperature [K] 
X : Characteristic parameter 
δ  : Deviation 
εrec : Recuperator effectiveness 
Γ : Flow capacity 
η : Efficiency 
 
Subscript 
c : Compressor 
i : Parameter index 
in : Inlet 
N : Neural network result 
O : Original 
out : Outlet 
ref : Reference 
s : Ssentropic 
t : Turbine 
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